GLACGIAL REFACTORING

A Glacier-inspired Approach to Code Cleanup
ROSE HOOPER | PYOHIO 2023

WHY GLACIERS?

WHY GLACIERS?

GLACIAL REFACTORING IS A GRADUAL PROCESS.

Several distinct stages

We can draw parallels between code features and glacial features.

GLAGIAL REFACTORING STAGES

e Codescape Accumulation e Accumulation (Pre-Glacial Period)
e Refactoring Phase e Glacial Advance
e Evolutionary Codescaping e Glacial Retreat

CODESCAPE

All software has a shape. | call this a codescape.

Some code is easy to follow, some is rugged and complex.

CODESCAPE ACCUMULATION

The beautiful beginnings.

Initial concept. Startup/project formed. Prototype. Adoption.
Features added, capabilities changed.
New developers, more contributors, more ideas. More capabilities.
Plugins, microservices, 3rd party APls.

THE EVER EVOLVING ECOSYSTEM AROUND US

Every-day influences shape the codescape.
Bigger. Better. Faster.

New hardware B new frameworks | Z, new languages & new

tools @
NEW EVERYTHING!

NEW EVERYTHING!

EVERYTHING IS AMAZING!

BUT WAIT

The promised land of bug-free, performant, easy to modify, unit-
tested code doesn't exist.

Some integration tests don't run.
There are magics sprinkled in the code and deployment toolchain.

Even cosmic rays cause problems.

10

GRADUAL ACCUMULATION OF CRUFT AND CODE FEATURES

Well-intentioned refactorings. Aberted features.

Backwards compatibility. Database cruft. Relics. Business priorities
and community pressure.

Rushed code. Misunderstood code.Magic dev environments.
Ownership changes. Outsourcing.
Friendly and . Broken dependencies.

Cloudification. Scope creep, deadlines, break-fix. Community issues,
disagreements.

My head hurts.

12

GLACIAL REFACTORING

e Gradual process intended to take time.

e Frequent small changes with minimal scope.
o Safe, easy to roll-back changes.

e Self-documenting next steps.

e Easytoincorporate into any release lifecycle.

13

GLACIAL REFACTORING

THE FIRST REFACTORING PHASE

During this phase, we'll act like glacial detectives, looking for clues in
the structure of our code.

Our goal? To gradually flatten and streamline the code, smoothing
out those rugged 'code mountains' we encounter.

IDENTIFYING THE TERRAIN

The first step in glacial refactoring is understanding our terrain.
We'll look for and identify features in our codescape that have
emerged over time.

EXAMPLE CODESCAPE FEATURES

e Feature Moraines: Accumulated layers of code, diverse and large,
each layer a testament to our evolving project.

e Code Erratics: Isolated pieces of code, remnants of past needs,
adrift in our current codescape.

e Workaround Eskers: Trails of quick fixes and shortcuts, weaving
through our code, often born from urgent needs.

e Deadline Scars: Marks of rushed development; hasty patches,
unpolished code, the product of tight timelines.

e Data Kettles: Pockets of data, scattered and disconnected,
leftovers from the flow of information over time.

e Code Mountains: Deeply nested and complex code structures,
resembling the rugged terrain carved by glaciers.

16

SOME EXAMPLE CODESCAPE FEATURES

EXPLORING FEATURE MORAINES IN CODE

Let's examine a code sample illustrating potential Feature Moraines
— areas where code has accumulated over time.

11 def import_initial_core_analysis(self, path): ...
12 def legacy_data_cleanup(self): ...

Hints of legacy data and and importing initial data.

18

TRACING THE SYSTEM'S ARCHITECTURE

Here, we find hints of our system's architecture, like a separate Data
Science database. This knowledge helps guide our refactoring
strategy.

1 from db.manager import db_connection, dsdb

4 def __init_ (self, db=dsdb): ...

13 def add_core_analysis(self, core_id, url=CORE_API, provider="USGS"): ...

19

DOCUMENTING WITH GLACIAL NOTES

As we refactor, it's vital to add 'Glacial Notes' — comments that
document our observations and action items. This helps both our
understanding and that of future developers.

GlacialNote: Appears to be unused, no refs in current code

FLATTENING CODE MOUNTAINS

A 'Code Mountain' is an unusually deeply nested code formation.

One of the most intimidating naturally occuring code formations to
work with. Usually full of Code Moraines and Code Erratics.

FLATTENING CODE MOUNTAINS

The distinct shape of a Code Mountain is easy to spot. The left
margin is shaped like the peaks and valleys of a mountain range.

1 Ifor slide in presentation:

2 Iif slide.is_have_content():

3 Ifor elemento in slide.elements:

4 Iif elemento.is_textual():

5 Ifor parrafo in elemento.parrafos:

6 |if parrafo.is_have_special_format():

7 Iif parrafo.is_bold():

8 elemento.apply_bold(parrafo)

9 elif parrafo.is_italic():
1@ elemento.apply_italic(parrafo)
11 Ielse:
12 |if sys.getenv("FF_20090101_0PS-2319"):
13 sys.exit("Unsupported format - NE&H")
14 continue
15 Ielse:
16 parrafo.normalize_format()
17 Ielse:
18 Ifor img in elemento.media:
19 Iif img.is_fit(slide):
20 Iif media_utils.needs_light_adjustment(img):
21 slide.add_img(img, bg=(255,255,255))
22 Ielse:

23 raise NotImplementedError('fhec =& gar')

FLATTENING CODE MOUNTAINS

Here we add a couple Glacial Notes documenting findings before changing code.

for slide in presentation:
if slide.is have content():
for elemento in slide.elements:
if elemento.is textual():
for parrafo in elemento.parrafos:
if parrafo.is_have_special_format():
if parrafo.is bold():
elemento.apply_bold(parrafo)
elif parrafo.is_italic():
elemento.apply_italic(parrafo)
else:
GlacialNote: Flag no longer set, JIRA issue closed in 2822
Clue: merge commlt for REL-4832 fixed 1n presentation UIL.
Action: Remove
sys.getenv("FF_20090101_O0P5-2319"):

A A 0

sys.exit("Unsupported format - FAES")

==

contilnue
glse:

parrafo.normalize_format()

GlaclialNote: Gooa spot to flatten or extract to functions

far imA 1 al amants madi o

With our intent committed, we can now make fixes, one at a time.

11
12
13
14
15
16

HAULING AWAY CODE ERRATICS

One example is Code Erratics..

else:
GlacialNote: Flag no longer set, JIRA issue closed in 2022
Clue: merge commit for REL-4832 fixed in presentation UI.
Action: Remove
if sys.getenv("FF_20090101_0PS-2319"):
sys.exit("Unsupported format - E&H")

25

HAULING AWAY CODE ERRATICS

Add Glacial Notes as needed.

for slide in presentation:
if slide.is _have content():
for elemento in slide.elements:
if elemento.is textuall():
for parrafto in elemento.parrafos:
if parrafo.is_have_special_format():
if parrafo.is_bold():
elemento.apply_bold(parrafo)
elif parrafo.is_italic():
elemento.apply_italic(parrafo)
11 continue # GlacialNote: Appears to be unnecessary.
else:
parrafo.normalize_formatl()
else:
GlacialNote: Good spot to flatten or extract to functions
for img in elemento.media:
if img.is_fit(slide):
if media_utils.needs_light_adjustment(img):
slide.add_img(img, bg=(255,255,255))
else:
raise NotImplementedError('fez = &mar')
elif img.need_resize():
img.resize_for(slide)

26

HEAVY DUTY EXCAVATION: FLIPPING IF-ELSE

Flipping if-else blocks is a powerful way to evaluate and flatten

code.
| 1 | 1l nrese I } 1 |
1 s [na content|
for elemento 1n slide.elements:
1T elemento.1s_textuall):
D parratd 1n elemento.parratos:

6 # GlacialNote: if-else main code path second
7 if parrafo.is_have_special_format():
8 if parrafo.is_bold():
9 elemento.apply_bold(parrafo)
10 elif parrafo.is_italic():
11 elemento.apply_italic(parrafo)
12 continue # GlacialNote: Appears to be unnecessary.
13 else:

14 parrafo.normalize_format()

HEAVY DUTY EXCAVATION: FLIPPING IF-ELSE

Here we negate the 1T and swap the code before and afer e L se.
The normal main code path is now first.

for slide 1n presentation:
if slide.is_have_content():
for elemento in slide.elements:
1T elemento.1s textuall):
for parrafo in elemento.parrafos:
6 if not parrafo.is_have_special_format():
7 parrafo.normalize_format()
8 else:
if parrafo.is bold():
elemento.apply bold(parrafo)
elif parrafo.is italic():
elemento.apply italic(parrafo)

continue # GlaclalNote: Appears to be unnecessary.

28

FLIPPING OFF THE ELSE

Now we canuse continue to tell the else to take a hike and peel off
a layer.

0 L1de 1n present on
1 Lide. nave_conten
for elemento 1n slide.elements:
1T elemento.1s_textuall):
or parrato 1n elemento.parratos:
1T not parrato.ls have speclal Tormati():
parrato.normalize _Tormat()
8 continue
9 if parrafo.is_bold():
10 elemento.apply_bold(parrafo)
11 elif parrafo.is_italic():
12 elemento.apply_italic(parrafo)

13 continue # GlacialNote: Appears to be unnecessary.

EVOLUTIONARY
CODESCAPING

THE GLACIAL RETREAT

ENVISIONING THE FUTURE

Evolutionary Codescaping is envisioned as an integral part of
software development life-cycles.

Using GlacialNotes for continuous improvement

Integrating refactoring seamlessly into SDLC

Maintaining a focus on core Glacial Refactoring principles
Tooling to facilitate understanding code behaviour and usage
Developing parallel code paths for risk mitigation

31

THE ROAD AHEAD

The journey of Glacial Refactoring is just beginning.

ASSISTANCE WELCOME

Join me in shaping this methodology.

Refining terminology, creating guidelines, and writing examples
Aligning with existing practices and terminology

Promoting adoption of a positive perspective on all kinds of past
code.

Building tooling: helper libraries, reporting tools, SDLC
Integrations, linting tools, etc.

33

Thank you for joining me on this exploration of Glacial Refactoring.

Here's ways to reach out to me.

=% Email rose@rosehooper.com
¢ Web rosehooper.com

@ Mastodon @krayola@mastodon.social

O Github github.com/rhooper

B LinkedIn linkedin.com/in/rosehooper

M Discord PyOhio https://www.pyohio.org/2023/discord/

34

mailto:rose@rosehooper.com
https://rosehooper.com/
https://mastodon.social/@krayola
https://rosehooper.com/slides/pyohio-2023/index.html?print-pdf
https://www.linkedin.com/in/rosehooper
https://www.pyohio.org/2023/discord/
mailto:rose@rosehooper.com
https://rosehooper.com/
https://mastodon.social/@krayola
https://rosehooper.com/slides/pyohio-2023/index.html?print-pdf
https://www.linkedin.com/in/rosehooper
https://www.pyohio.org/2023/discord/

